论文标题
小型汉克尔操作员在矢量有价值的一般的fock空间
Small Hankel operators on vector valued generalzed Fock spaces
论文作者
论文摘要
我们在一类矢量值的Fock类型的空间上研究了小型Hankel运营商$ H_B $,带有操作员可价值的全态符号$ b $。我们表明,$ h_b $的有限性 /紧凑性等于$ b $的成员资格到特定的增长空间,这是通过Littlewood-Paley类型条件和Bergman型投影进行描述的,并估计$ H_B $的标准。我们还为这些Fock空间建立了二元性和密度的一些特性。
We study small Hankel operators $h_b$ with operator-valued holomorphic symbol $b$ on a class of vector-valued Fock type spaces. We show that the boundedness / compactness of $h_b$ is equivalent to the membership of $b$ to a specific growth space, which is described via a Littlewood-Paley type condition and a Bergman type projection, and estimate the norm of $h_b$. We also establish some properties of duality and density for these Fock spaces.