论文标题

船只行为和异常检测的挑战:从古典机器学习到深度学习

Challenges in Vessel Behavior and Anomaly Detection: From Classical Machine Learning to Deep Learning

论文作者

Petry, Lucas May, Soares, Amilcar, Bogorny, Vania, Brandoli, Bruno, Matwin, Stan

论文摘要

在过去的十年中,全球海上活动的扩张和自动识别系统(AIS)的发展驱动了海上监测系统的进步。监测船只的行为对于保护海事行动,保护其他航行海洋和海洋动物群和动植物的行为至关重要。考虑到不断生成的大量血管数据,仅由于事件和异常检测方法提供的决策支持系统,因此对血管行为进行实时分析才是可能。但是,当前关于血管事件检测的工作是能够仅处理单一或几种预定义的血管行为的临时方法。大多数现有方法都不能从数据中学习,需要定义描述每种行为的查询和规则。在本文中,我们讨论了古典机器学习和船只事件和异常检测深度学习的挑战和机遇。我们希望激励对新方法和工具的研究,因为解决这些挑战是迈向实际智能海事监测系统的重要一步。

The global expansion of maritime activities and the development of the Automatic Identification System (AIS) have driven the advances in maritime monitoring systems in the last decade. Monitoring vessel behavior is fundamental to safeguard maritime operations, protecting other vessels sailing the ocean and the marine fauna and flora. Given the enormous volume of vessel data continually being generated, real-time analysis of vessel behaviors is only possible because of decision support systems provided with event and anomaly detection methods. However, current works on vessel event detection are ad-hoc methods able to handle only a single or a few predefined types of vessel behavior. Most of the existing approaches do not learn from the data and require the definition of queries and rules for describing each behavior. In this paper, we discuss challenges and opportunities in classical machine learning and deep learning for vessel event and anomaly detection. We hope to motivate the research of novel methods and tools, since addressing these challenges is an essential step towards actual intelligent maritime monitoring systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源