论文标题

累积分布转换图像分类的子空间建模

Radon cumulative distribution transform subspace modeling for image classification

论文作者

Shifat-E-Rabbi, Mohammad, Yin, Xuwang, Rubaiyat, Abu Hasnat Mohammad, Li, Shiying, Kolouri, Soheil, Aldroubi, Akram, Nichols, Jonathan M., Rohde, Gustavo K.

论文摘要

我们提出了一种适用于广泛的图像变形模型的新的监督图像分类方法。该方法利用了先前描述的ra累积分布变换(R-CDT)的图像数据,该图像数据被利用其数学属性以更适合机器学习的形式表达图像数据。尽管某些操作(例如翻译,缩放和高阶转换)在本机图像空间中建模挑战,但我们显示R-CDT可以捕获其中一些变化,从而使相关的图像分类问题易于解决。该方法 - 在R-CDT空间中使用最近的空间算法 - 非常易于实现,非著作,没有超级参数来调整,计算有效,标签有效,并为许多类型的分类问题提供了竞争精度。除了测试精度性能外,我们还在计算效率方面(可以在不使用GPU的情况下实施它),还显示了改进(相对于基于神经网络的方法),培训所需的训练样本数量以及分布外的概括。用于复制我们的结果的Python代码可在https://github.com/rohdelab/rcdt_ns_classifier上获得。

We present a new supervised image classification method applicable to a broad class of image deformation models. The method makes use of the previously described Radon Cumulative Distribution Transform (R-CDT) for image data, whose mathematical properties are exploited to express the image data in a form that is more suitable for machine learning. While certain operations such as translation, scaling, and higher-order transformations are challenging to model in native image space, we show the R-CDT can capture some of these variations and thus render the associated image classification problems easier to solve. The method -- utilizing a nearest-subspace algorithm in R-CDT space -- is simple to implement, non-iterative, has no hyper-parameters to tune, is computationally efficient, label efficient, and provides competitive accuracies to state-of-the-art neural networks for many types of classification problems. In addition to the test accuracy performances, we show improvements (with respect to neural network-based methods) in terms of computational efficiency (it can be implemented without the use of GPUs), number of training samples needed for training, as well as out-of-distribution generalization. The Python code for reproducing our results is available at https://github.com/rohdelab/rcdt_ns_classifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源