论文标题

用异质培养基恢复随机分数扩散方程中时间依赖性源项

Recovery of the time-dependent source term in the stochastic fractional diffusion equation with heterogeneous medium

论文作者

Fu, Shubin, Zhang, Zhidong

论文摘要

在这项工作中,考虑了与随机源的分数扩散方程中的一个反问题。所使用的测量值是单点数据$ u(x_0,t,ω)实现的统计矩。$我们在整体意义上构建了解决方案$ u $的表示形式,然后证明可以在理论上受到矩的未知数。对于数值重建,我们建立了一种具有正则化Levenberg-Marquardt类型的迭代算法,并显示了该算法产生的一些数值结果。对于高度异构培养基的情况,将采用广义的多尺度有限元方法(GMSFEM)。

In this work, an inverse problem in the fractional diffusion equation with random source is considered. The measurements used are the statistical moments of the realizations of single point data $u(x_0,t,ω).$ We build the representation of the solution $u$ in integral sense, then prove that the unknowns can be bounded by the moments theoretically. For the numerical reconstruction, we establish an iterative algorithm with regularized Levenberg-Marquardt type and some numerical results generated from this algorithm are displayed. For the case of highly heterogeneous media, the Generalized Multiscale finite element method (GMsFEM) will be employed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源