论文标题
对Virasoro和Kac-Moody Orbits的几何作用进行的复杂度度量
Complexity measures from geometric actions on Virasoro and Kac-Moody orbits
论文作者
论文摘要
我们进一步推进了基于共形对称转换构建的门集的2D CFT的计算复杂性概念的研究。以前,已经表明,通过选择合适的成本函数,所产生的复杂性功能等于Virasoro组的共连接轨道上的几何作用(组)作用,直到起源于中央扩展的术语。我们表明,可以通过修改成本函数来恢复此术语,从而确切地等价。此外,我们将方法推广到KAC-MOODY对称组,再次找到复杂性功能和几何作用之间的确切等效性。然后,我们确定这些复杂性度量的最佳电路,并计算几个最佳转换示例的相应成本。在Virasoro情况下,我们发现除了真空状态外,对于所有参考状态的选择,复杂性仅测量与相变相关的成本,同时将零成本分配给转换的非相变变化部分。相比之下,对于Kac-Moody组,确实存在非平凡的最佳转换,而超出了有助于复杂性的相变,从而产生有限的规格不变结果。此外,我们还表明,路径积分优化的替代复杂性建议等同于这里研究的Virasoro建议。最后,我们为Virasoro集团的复杂性定义绘制了一个新的建议,该建议衡量了超出相变的非平凡转换的成本。该提案基于指标在保形转换的谎言组上给出的成本函数。使用Euler-Arnold方法实现相应复杂性功能的最小化,从而使Korteweg-De Vries方程作为运动方程。
We further advance the study of the notion of computational complexity for 2d CFTs based on a gate set built out of conformal symmetry transformations. Previously, it was shown that by choosing a suitable cost function, the resulting complexity functional is equivalent to geometric (group) actions on coadjoint orbits of the Virasoro group, up to a term that originates from the central extension. We show that this term can be recovered by modifying the cost function, making the equivalence exact. Moreover, we generalize our approach to Kac-Moody symmetry groups, finding again an exact equivalence between complexity functionals and geometric actions. We then determine the optimal circuits for these complexity measures and calculate the corresponding costs for several examples of optimal transformations. In the Virasoro case, we find that for all choices of reference state except for the vacuum state, the complexity only measures the cost associated to phase changes, while assigning zero cost to the non-phase changing part of the transformation. For Kac-Moody groups in contrast, there do exist non-trivial optimal transformations beyond phase changes that contribute to the complexity, yielding a finite gauge invariant result. Furthermore, we also show that the alternative complexity proposal of path integral optimization is equivalent to the Virasoro proposal studied here. Finally, we sketch a new proposal for a complexity definition for the Virasoro group that measures the cost associated to non-trivial transformations beyond phase changes. This proposal is based on a cost function given by a metric on the Lie group of conformal transformations. The minimization of the corresponding complexity functional is achieved using the Euler-Arnold method yielding the Korteweg-de Vries equation as equation of motion.