论文标题

学会加速多个方向3D打印的分解

Learning to Accelerate Decomposition for Multi-Directional 3D Printing

论文作者

Wu, Chenming, Liu, Yong-Jin, Wang, Charlie C. L.

论文摘要

多方向3D打印具有减少或消除支持结构的需求的能力。最近的工作提出了一种梁引导的搜索算法,以找到优化的平面裂解序列,从而给定3D模型提供体积分解。在不同区域采用不同的打印方向来制造具有较大支持的模型(甚至在许多情况下没有支持)。要获得优化的分解,搜索算法需要使用大型宽度宽度,从而导致非常耗时的计算。在本文中,我们提出了一个学习框架,该框架可以通过使用较小数量的原始梁宽度来加速梁引导的搜索,以获得相似质量的结果。具体而言,我们使用具有大型光束宽度的光束引导搜索结果来训练基于六个新提出的特征指标的候选剪裁平面的评分功能。在这些特征指标的帮助下,神经网络捕获了当前和序列依赖性信息,以评分剪辑的候选者。结果,我们可以达到约3倍的计算速度。我们在大型模型数据集上测试并演示了加速分解,用于3D打印。

Multi-directional 3D printing has the capability of decreasing or eliminating the need for support structures. Recent work proposed a beam-guided search algorithm to find an optimized sequence of plane-clipping, which gives volume decomposition of a given 3D model. Different printing directions are employed in different regions to fabricate a model with tremendously less support (or even no support in many cases).To obtain optimized decomposition, a large beam width needs to be used in the search algorithm, leading to a very time-consuming computation. In this paper, we propose a learning framework that can accelerate the beam-guided search by using a smaller number of the original beam width to obtain results with similar quality. Specifically, we use the results of beam-guided search with large beam width to train a scoring function for candidate clipping planes based on six newly proposed feature metrics. With the help of these feature metrics, both the current and the sequence-dependent information are captured by the neural network to score candidates of clipping. As a result, we can achieve around 3x computational speed. We test and demonstrate our accelerated decomposition on a large dataset of models for 3D printing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源