论文标题
震惊流的自我磨损细丝形成:跨细丝的速度梯度
Self-gravitating Filament Formation from Shocked Flows: Velocity Gradients across Filaments
论文作者
论文摘要
在恒星形成云的典型环境中,收敛的超音速湍流会产生冲击压缩的区域,并可以创建强烈磁性薄板状的层。数值MHD模拟表明,在这些后震后层中,密集的细丝和嵌入式自我磨碎的核心通过沿磁场线收集材料形成。由于首选质量收集的结果,垂直于细丝的速度梯度是模拟中看到的一个共同特征。我们表明,这一预测与Carma大面积恒星形成调查(Classy)的最新观察非常吻合,我们从中确定了几种垂直于其主要轴的明显速度梯度的细丝。我们从南方南部的西北部突出了细丝,我们在模拟结果和观察数据之间提供了定性和定量比较。特别是,我们表明,无量纲比率$ c_v \ equiv {ΔV_H}^2/(gm/l)$,其中$ΔV_H$是灯丝垂直速度差异的一半,而$ m/l $ $ m/l $是每一个单位长度的丝状质量,可以区分对液体的质量,以区分这些含量的含量,这些含量是应得的,呈腐蚀性 - 呈腐烂的质量,并呈现出巨大的压缩。我们得出的结论是,在西北丝状的蛇蛇南部丝状中观察到的垂直速度梯度可能是由重力诱导的各向异性材料从扁平层产生的各向异性积聚引起的。使用对模拟细丝的合成观察结果,我们还提出,密度选择效应可以解释观察到的亚曲线(一个细丝(一个细丝分解为速度空间中的两个成分)),如Debhabal等人所报道的那样。 (2018)。
In typical environments of star-forming clouds, converging supersonic turbulence generates shock-compressed regions, and can create strongly-magnetized sheet-like layers. Numerical MHD simulations show that within these post-shock layers, dense filaments and embedded self-gravitating cores form via gathering material along the magnetic field lines. As a result of the preferred-direction mass collection, a velocity gradient perpendicular to the filament major axis is a common feature seen in simulations. We show that this prediction is in good agreement with recent observations from the CARMA Large Area Star Formation Survey (CLASSy), from which we identified several filaments with prominent velocity gradients perpendicular to their major axes. Highlighting a filament from the northwest part of Serpens South, we provide both qualitative and quantitative comparisons between simulation results and observational data. In particular, we show that the dimensionless ratio $C_v \equiv {Δv_h}^2/(GM/L)$, where $Δv_h$ is half of the observed perpendicular velocity difference across a filament, and $M/L$ is the filament's mass per unit length, can distinguish between filaments formed purely due to turbulent compression and those formed due to gravity-induced accretion. We conclude that the perpendicular velocity gradient observed in the Serpens South northwest filament can be caused by gravity-induced anisotropic accretion of material from a flattened layer. Using synthetic observations of our simulated filaments, we also propose that a density-selection effect may explain observed subfilaments (one filament breaking into two components in velocity space) as reported in Dhabal et al. (2018).