论文标题

$ l^p $ - 伯格曼对商域的投影

$L^p$-regularity of the Bergman projection on quotient domains

论文作者

Bender, Chase, Chakrabarti, Debraj, Edholm, Luke D., Mainkar, Meera

论文摘要

我们通过将它们作为简单域的商表示,可以在广泛的Reinhardt域中获得$ l^p $结合的庞大范围。我们证明了一项通用转型法,该法律与有限的群体有关$ l^p $结合。伯格曼预测为$ l^p $结合的$ p $的范围被发现随着域的复杂性的增加而收缩。

We obtain sharp ranges of $L^p$-boundedness for domains in a wide class of Reinhardt domains representable as sub-level sets of monomials, by expressing them as quotients of simpler domains. We prove a general transformation law relating $L^p$-boundedness on a domain and its quotient by a finite group. The range of $p$ for which the Bergman projection is $L^p$-bounded on our class of Reinhardt domains is found to shrink as the complexity of the domain increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源