论文标题

低等级矩阵的伯特和沉没的永久性及其对最大可能性的影响

The Bethe and Sinkhorn Permanents of Low Rank Matrices and Implications for Profile Maximum Likelihood

论文作者

Anari, Nima, Charikar, Moses, Shiragur, Kirankumar, Sidford, Aaron

论文摘要

在本文中,我们考虑了计算离散分布的轮廓的可能性的问题,即观察元素频率的多键以及计算最大可能性(PML)分布的概率,即具有最大轮廓可能性的分布。对于每个问题,我们提供了从离散分布中给定$ n $ i.i.d. \给定的多项式时间算法,获得了$ \ exp \ left(-o(\ sqrt {n} \ log n} \ log n)\ right $ \ exp \ weft的近似因子,在先前最畅销的bodnomial ext of $ \ ext(2/)(-O)(-o) (Charikar,Shiragur和Sidford,2019年)。通过Acharya,Das,Orlitsky和Suresh(2016)的工作,这意味着在更广泛的误差参数范围内离散分布的对称特性的多项式时间通用估计器。 我们通过提供有关Bethe和Sinkhorn永久物的近似质量的新界限来实现这些结果(Vontobel,2012年和2014年)。我们表明,其中的每一个都是$ \ exp(o(k \ log(n/k)))$近似值$ n \ times n $矩阵,最多$ k $,在$ \ exp(o(n))$的先前已知界面上提高了$ k $。为了在PML上获得结果,我们利用了一个事实,即PML目标与具有$ \ sqrt {n} $不同列的某个Vandermonde矩阵的永久性成正比,即最多具有$ \ sqrt {n} $的非负等级。作为我们工作的副产品,我们在先前的工作(CSS19)中建立了令人惊讶的联系与经过充分研究的伯特和sindhorn近似值之间的联系。

In this paper we consider the problem of computing the likelihood of the profile of a discrete distribution, i.e., the probability of observing the multiset of element frequencies, and computing a profile maximum likelihood (PML) distribution, i.e., a distribution with the maximum profile likelihood. For each problem we provide polynomial time algorithms that given $n$ i.i.d.\ samples from a discrete distribution, achieve an approximation factor of $\exp\left(-O(\sqrt{n} \log n) \right)$, improving upon the previous best-known bound achievable in polynomial time of $\exp(-O(n^{2/3} \log n))$ (Charikar, Shiragur and Sidford, 2019). Through the work of Acharya, Das, Orlitsky and Suresh (2016), this implies a polynomial time universal estimator for symmetric properties of discrete distributions in a broader range of error parameter. We achieve these results by providing new bounds on the quality of approximation of the Bethe and Sinkhorn permanents (Vontobel, 2012 and 2014). We show that each of these are $\exp(O(k \log(N/k)))$ approximations to the permanent of $N \times N$ matrices with non-negative rank at most $k$, improving upon the previous known bounds of $\exp(O(N))$. To obtain our results on PML, we exploit the fact that the PML objective is proportional to the permanent of a certain Vandermonde matrix with $\sqrt{n}$ distinct columns, i.e. with non-negative rank at most $\sqrt{n}$. As a by-product of our work we establish a surprising connection between the convex relaxation in prior work (CSS19) and the well-studied Bethe and Sinkhorn approximations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源