论文标题

在非标准慢速动力学系统中的接触奇点

Contact singularities in nonstandard slow-fast dynamical systems

论文作者

Lizarraga, Ian, Marangell, Robert, Wechselberger, Martin

论文摘要

我们开发了一般表格的奇异扰动(或“慢速”)向量场的触点奇异理论,$ z'= h(z,\ varepsilon)$,$ z \ in \ mathbb {r}^n $和$ \ \ \ varepsilon \ ll 1 $。我们的主要结果是在假设矢量场的前阶项允许合适的分解的假设下,推导了可计算的,与坐标无关的定义方程式的定义方程。可以在各种应用中明确计算此分解。我们通过定位接触褶皱来证明这些可计算标准,并首次在某些非标准模型的生化振荡器中与尖端进行联系。

We develop the contact singularity theory for singularly-perturbed (or `slow-fast') vector fields of the general form $z' = H(z,\varepsilon)$, $z\in\mathbb{R}^n$ and $\varepsilon\ll 1$. Our main result is the derivation of computable, coordinate-independent defining equations for contact singularities under an assumption that the leading-order term of the vector field admits a suitable factorization. This factorization can in turn be computed explicitly in a wide variety of applications. We demonstrate these computable criteria by locating contact folds and, for the first time, contact cusps in some nonstandard models of biochemical oscillators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源