论文标题
基于MR的宠物衰减校正使用了联合超短回声时间/多回声DIXON获取
MR-Based PET Attenuation Correction using a Combined Ultrashort Echo Time/Multi-Echo Dixon Acquisition
论文作者
论文摘要
我们提出了一种基于磁共振(MR)的方法,用于使用物理隔室模型和Ultrashort Echo Time(UTE)/Multi-Echo Dixon(Mute)的收购来估算正电子发射断层扫描(PET)连续线性衰减系数(LAC)。具体而言,我们提出了一个三维(3D)静音序列,以同时在一次采集中同时从水,脂肪和短-T2组件(例如骨骼)中获取信号。提出的静音序列将3D UTE与多回波迪克森的采集集成在一起,并使用稀疏的径向轨迹来加速成像速度。使用特殊的K空间轨迹映射序列测量径向K空间轨迹中的误差,并校正图像重建。一个物理隔室模型用于拟合测得的多回声MR信号,以获取每个体素的水,脂肪和骨成分的分数,然后将其用于估算连续的LAC映射以进行PET衰减校正。使用计算机断层扫描(CT)的LAC作为参考,通过幻影和体内人类研究评估了所提出的方法的性能。与基于Dixon和Atlas的MRAC方法相比,所提出的方法产生的PET图像具有较高的相关性和相对于参考的相似性。在所有四个叶(额叶,颞叶,顶,枕骨,枕骨),小脑,整个白质和灰质区域的所有受试者(n = 6)中,由所提出的方法重建的PET活性值的相对绝对误差均低于5%(额叶,时间,枕骨,枕骨)。所提出的静音方法可以生成主体特异性的连续LAC图,以进行PET/MR中的PET衰减校正。
We propose a magnetic resonance (MR)-based method for estimation of continuous linear attenuation coefficients (LAC) in positron emission tomography (PET) using a physical compartmental model and ultrashort echo time (UTE)/multi-echo Dixon (mUTE) acquisitions. Specifically, we propose a three-dimensional (3D) mUTE sequence to acquire signals from water, fat, and short-T2 components (e.g., bones) simultaneously in a single acquisition. The proposed mUTE sequence integrates 3D UTE with multi-echo Dixon acquisitions and uses sparse radial trajectories to accelerate imaging speed. Errors in the radial k-space trajectories are measured using a special k-space trajectory mapping sequence and corrected for image reconstruction. A physical compartmental model is used to fit the measured multi-echo MR signals to obtain fractions of water, fat and bone components for each voxel, which are then used to estimate the continuous LAC map for PET attenuation correction. The performance of the proposed method was evaluated via phantom and in vivo human studies, using LACs from Computed Tomography (CT) as reference. Compared to Dixon- and atlas-based MRAC methods, the proposed method yielded PET images with higher correlation and similarity in relation to the reference. The relative absolute errors of PET activity values reconstructed by the proposed method were below 5% in all of the four lobes (frontal, temporal, parietal, occipital), cerebellum, whole white matter and gray matter regions across all subjects (n=6). The proposed mUTE method can generate subject-specific, continuous LAC map for PET attenuation correction in PET/MR.