论文标题
在集合$ \ {π(kn):\ k = 1,2,3,\ ldots \} $
On the set $\{π(kn):\ k=1,2,3,\ldots\}$
论文作者
论文摘要
Z.-W。的开放猜想Sun指出,对于任何整数$ n> 1 $,都有一个正整数$ k \ le n $,因此$π(kn)$是PRIME,其中$π(x)$表示不超过$ x $的数量。在本文中,我们表明,对于任何正整数$ n $,set $ \ {π(kn):\ k = 1,2,3,\ ldots \} $包含无限的许多$ p_2 $ - numbers,它们是最多两个Primes的产品。我们还证明,在贝特曼(Bateman)的猜想下,集合$ \ {π(4k):\ k = 1,2,3,\ ldots \} $包含无限的许多素数。
An open conjecture of Z.-W. Sun states that for any integer $n>1$ there is a positive integer $k\le n$ such that $π(kn)$ is prime, where $π(x)$ denotes the number of primes not exceeding $x$. In this paper, we show that for any positive integer $n$ the set $\{π(kn):\ k=1,2,3,\ldots\}$ contains infinitely many $P_2$-numbers which are products of at most two primes. We also prove that under the Bateman--Horn conjecture the set $\{π(4k):\ k=1,2,3,\ldots\}$ contains infinitely many primes.