论文标题
学会分割尾巴
Learning to Segment the Tail
论文作者
论文摘要
现实世界的视觉识别需要在大规模长尾数据中处理极端样本失衡。我们为具有挑战性的LVIS任务提出了“分裂与征服”策略:将整个数据分为平衡的部分,然后应用增量学习来征服每个数据。这是一个新颖的学习范式:班级学习少量学习,这对于随着时间的推移而挑战尤其有效:1)旧阶级知识评论中的类不平衡和2)新级学习中的少数数据数据。我们称我们的方法学习以细分尾巴(LST)。特别是,我们设计了一个实例级平衡的重播方案,这是一个记忆效率的近似,可以平衡来自旧级图像的实例级别样本。我们还建议将元模块用于新级学习,其中模块参数跨增量阶段共享,从数据富裕的头到数据贫乏的尾巴,从而逐渐获得学习对学习知识。我们从经验上表明:以牺牲校长遗忘的牺牲为代价,我们可以在少于10个实例的情况下获得8.3%的AP提高,从而在整个1,230个班级中实现了总体2.0%的AP提升。
Real-world visual recognition requires handling the extreme sample imbalance in large-scale long-tailed data. We propose a "divide&conquer" strategy for the challenging LVIS task: divide the whole data into balanced parts and then apply incremental learning to conquer each one. This derives a novel learning paradigm: class-incremental few-shot learning, which is especially effective for the challenge evolving over time: 1) the class imbalance among the old-class knowledge review and 2) the few-shot data in new-class learning. We call our approach Learning to Segment the Tail (LST). In particular, we design an instance-level balanced replay scheme, which is a memory-efficient approximation to balance the instance-level samples from the old-class images. We also propose to use a meta-module for new-class learning, where the module parameters are shared across incremental phases, gaining the learning-to-learn knowledge incrementally, from the data-rich head to the data-poor tail. We empirically show that: at the expense of a little sacrifice of head-class forgetting, we can gain a significant 8.3% AP improvement for the tail classes with less than 10 instances, achieving an overall 2.0% AP boost for the whole 1,230 classes.