论文标题
参数lyapunov指数
Parametric Lyapunov exponents
论文作者
论文摘要
在$ \ mathbb {p}^1 $的有理图的代数家族中,我们表明,对于明显的临界值的分叉电流的痕迹,几乎每个参数,临界值是collet-eckmann。这扩展了使用Makarov定理,在单次家庭中扩展了Graczyk和Świcatek的先前结果。我们的方法基于层流理论的思想。
In an algebraic family of rational maps of $\mathbb{P}^1$, we show that, for almost every parameter for the trace of the bifurcation current of a marked critical value, the critical value is Collet-Eckmann. This extends previous results of Graczyk and Świcatek in the unicritical family, using Makarov theorem. Our methods are based instead on ideas of laminar currents theory.