论文标题

通过母体用方法

Nanomechanical sonification of the 2019-nCoV coronavirus spike protein through a materiomusical approach

论文作者

Buehler, Markus J.

论文摘要

蛋白质几乎是所有生命的关键基础,为蜘蛛丝,细胞和头发提供了材料基础,还提供了从酶到药物的其他功能,以及病毒等病原体。基于对原子和分子在多个尺度上的结构和运动的纳米力学分析,我们报告了Covid-19,2019年NCOV的病原体的冠状病毒尖峰蛋白的超声词版本。使用一种新型纳米力学的超声方法创建的音频信号具有蛋白质主要,次要结构和高阶结构的振动签名的覆盖层。呈现音乐编码为两个版本 - 一个在氨基酸量表中,一个基于同等气质调整 - 该方法允许在可听见的空间中表达蛋白质结构,提供新颖的途径来代表,分析和设计长度和时间尺度的架构特征。我们进一步报告了五种不同蛋白质结构的层次频谱分析,这些分析提供了有关遗传突变以及病毒峰值蛋白与人ACE2细胞受体的结合的见解直接影响音频的。该方法的应用可能包括通过设计蛋白序列,通过旋律对位,尖峰蛋白中的结合位点匹配的蛋白质序列来开发从头抗体。其他物质编码的其他应用包括通过操纵声音,检测突变以及提供一种与更广泛的社区解释蛋白质物理学的方法。它还形成了一种基于物理的构图技术来创建新艺术,称为材料,类似于为画家找到新的色彩色彩。在这里,物质的纳米力学结构反映在振荡框架中,提出了一个新的调色板,以供声音发电,并可以补充或支持人类的创造力。

Proteins are key building blocks of virtually all life, providing the material foundation of spider silk, cells, and hair, but also offering other functions from enzymes to drugs, and pathogens like viruses. Based on a nanomechanical analysis of the structure and motions of atoms and molecules at multiple scales, we report sonified versions of the coronavirus spike protein of the pathogen of COVID-19, 2019-nCoV. The audio signal, created using a novel nanomechanical sonification method, features an overlay of the vibrational signatures of the protein's primary, secondary and higher-order structures. Presenting musical encoding in two versions - one in the amino-acid scale and one based on equal temperament tuning - the method allows for expressing protein structures in audible space, offering novel avenues to represent, analyze and design architectural features across length- and time-scales. We further report a hierarchical frequency spectrum analysis of five distinct protein structures, which offer insights into how genetic mutations, and the binding of the virus spike protein to the human ACE2 cell receptor directly influence the audio. Applications of the approach may include the development of de novo antibodies by designing protein sequences that match, through melodic counterpoints, the binding sites in the spike protein. Other applications of audible coding of matter include material design by manipulating sound, detecting mutations, and offering a way to reach out to broader communities to explain the physics of proteins. It also forms a physics-based compositional technique to create new art, referred to as materiomusic, which is akin to finding a new palette of colors for a painter. Here, the nanomechanical structure of matter, reflected in an oscillatory framework, presents a new palette for sound generation, and can complement or support human creativity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源