论文标题

计数平面立方曲线在有限磁场上具有规定数量的合理交叉点

Counting Plane Cubic Curves over Finite Fields with a Prescribed Number of Rational Intersection Points

论文作者

Kaplan, Nathan, Matei, Vlad

论文摘要

For each integer $k \in [0,9]$, we count the number of plane cubic curves defined over a finite field $\mathbb{F}_q$ that do not share a common component and intersect in exactly $k\ \mathbb{F}_q$-rational points.我们将此设置为有关某个投影芦苇磨损代码的重量枚举器的问题。证明的主要输入包括计数的分数曲线对,这些曲线确实具有共同的组件,计数未能对立方体强加独立条件的点的配置以及Macwilliams Theorem从编码理论中的变化。

For each integer $k \in [0,9]$, we count the number of plane cubic curves defined over a finite field $\mathbb{F}_q$ that do not share a common component and intersect in exactly $k\ \mathbb{F}_q$-rational points. We set this up as a problem about a weight enumerator of a certain projective Reed-Muller code. The main inputs to the proof include counting pairs of cubic curves that do share a common component, counting configurations of points that fail to impose independent conditions on cubics, and a variation of the MacWilliams theorem from coding theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源