论文标题
3D-MPA:3D语义实例分割的多提案聚合
3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation
论文作者
论文摘要
我们提出3D-MPA,这是一种在3D点云上分割的方法。给定输入点云,我们提出了一种以对象为中心的方法,每个点都会投票赞成其对象中心。我们从预测的对象中心采样对象建议。然后,我们从投票给同一对象中心的分组点功能中学习建议功能。图形卷积网络引入了港口间关系,除了低级点功能外,还提供了更高级别的功能学习。每个提案都包含一个语义标签,这是一组相关点,我们在其中定义了前景掩码,物体得分和聚合特征。以前的作品通常对获得最终对象检测或语义实例的提案进行非最大抑制(NMS)。但是,NMS可以丢弃潜在的预测。取而代之的是,我们的方法将所有建议和根据学习的聚合特征将它们分组在一起。我们表明,分组提案改善了NMS,并且在ScannETV2基准和S3DIS数据集上的3D对象检测和语义实例细分的任务上胜过先前的最新方法。
We present 3D-MPA, a method for instance segmentation on 3D point clouds. Given an input point cloud, we propose an object-centric approach where each point votes for its object center. We sample object proposals from the predicted object centers. Then, we learn proposal features from grouped point features that voted for the same object center. A graph convolutional network introduces inter-proposal relations, providing higher-level feature learning in addition to the lower-level point features. Each proposal comprises a semantic label, a set of associated points over which we define a foreground-background mask, an objectness score and aggregation features. Previous works usually perform non-maximum-suppression (NMS) over proposals to obtain the final object detections or semantic instances. However, NMS can discard potentially correct predictions. Instead, our approach keeps all proposals and groups them together based on the learned aggregation features. We show that grouping proposals improves over NMS and outperforms previous state-of-the-art methods on the tasks of 3D object detection and semantic instance segmentation on the ScanNetV2 benchmark and the S3DIS dataset.