论文标题

ACTGAN:灵活有效的一击面部重演

ActGAN: Flexible and Efficient One-shot Face Reenactment

论文作者

Kosarevych, Ivan, Petruk, Marian, Kostiv, Markian, Kupyn, Orest, Maksymenko, Mykola, Budzan, Volodymyr

论文摘要

本文介绍了Actgan-一种新型的端到端生成对抗网络(GAN),用于一张脸部重演。给定两个图像,目标是以光真实的方式将源演员的面部表情转移到目标人上。虽然现有方法需要预定目标身份,但我们通过引入“多一到多的”方法来解决此问题,该方法允许任意人员用于源和目标,而无需额外的再培训。为此,我们将功能金字塔网络(FPN)用作核心发电机构建块,这是FPN在面部重演中的第一个应用,从而产生了更好的结果。我们还引入了一种解决方案,以通过在深面识别域中采用最先进的方法来维护综合和目标人之间的身份。该体系结构很容易在不同的情况下支持重演:在表达准确性,身份保存和整体图像质量方面,“多对多”,“一对一”,“一对一”。我们证明,Actgan与有关视觉质量的最新作品实现了竞争性能。

This paper introduces ActGAN - a novel end-to-end generative adversarial network (GAN) for one-shot face reenactment. Given two images, the goal is to transfer the facial expression of the source actor onto a target person in a photo-realistic fashion. While existing methods require target identity to be predefined, we address this problem by introducing a "many-to-many" approach, which allows arbitrary persons both for source and target without additional retraining. To this end, we employ the Feature Pyramid Network (FPN) as a core generator building block - the first application of FPN in face reenactment, producing finer results. We also introduce a solution to preserve a person's identity between synthesized and target person by adopting the state-of-the-art approach in deep face recognition domain. The architecture readily supports reenactment in different scenarios: "many-to-many", "one-to-one", "one-to-another" in terms of expression accuracy, identity preservation, and overall image quality. We demonstrate that ActGAN achieves competitive performance against recent works concerning visual quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源