论文标题
通过数据同化的小太阳系物体的热物理建模和参数估计
Thermophysical modelling and parameter estimation of small solar system bodies via data assimilation
论文作者
论文摘要
从热红外观测中得出热物理特性,例如热惯性,为行星体上表面材料的结构提供了有用的见解。这些特性的估计通常是通过拟合由热物理模型计算出的红外观测的温度变化来完成的。对于多个免费模型参数,传统方法(例如最小二乘拟合或马尔可夫链蒙特卡洛方法)在计算上变得太昂贵了。因此,对几个热物理参数的同时估计及其相应的不确定性和相关性通常在计算上是不可行的,并且分析通常会降低为拟合一个或两个参数。数据同化方法已被证明是健壮的,而对于大量参数,即使是足够准确和计算负担得起的。本文将引入一种标准的顺序数据同化方法,集合平方根滤波器,以对小行星表面的热物理建模。该方法用于重新分析MARA仪器的红外观测,该观察测量了近地小行星(162173)Ryugu表面上单个巨石的昼夜温度变化。热惯性估计为$ 295 \ pm 18 $ $ \ mathrm {j \,m^{ - 2} \,k^{ - 1} \,s^{ - 1/2}}} $,而初始分析的所有五个免费参数均量化和同步。基于此热惯性估计,巨石的热导率估计在0.07至0.12 $ \ mathrm {w \,m^{ - 1} \,k^{ - 1}} $,孔隙率在0.30和0.52之间。在热物理参数推导中,所有自由模型参数的相关性和不确定性首次纳入估计过程中,该过程的效率比可比参数扫描高5000倍。
Deriving thermophysical properties such as thermal inertia from thermal infrared observations provides useful insights into the structure of the surface material on planetary bodies. The estimation of these properties is usually done by fitting temperature variations calculated by thermophysical models to infrared observations. For multiple free model parameters, traditional methods such as Least-Squares fitting or Markov-Chain Monte-Carlo methods become computationally too expensive. Consequently, the simultaneous estimation of several thermophysical parameters together with their corresponding uncertainties and correlations is often not computationally feasible and the analysis is usually reduced to fitting one or two parameters. Data assimilation methods have been shown to be robust while sufficiently accurate and computationally affordable even for a large number of parameters. This paper will introduce a standard sequential data assimilation method, the Ensemble Square Root Filter, to thermophysical modelling of asteroid surfaces. This method is used to re-analyse infrared observations of the MARA instrument, which measured the diurnal temperature variation of a single boulder on the surface of near-Earth asteroid (162173) Ryugu. The thermal inertia is estimated to be $295 \pm 18$ $\mathrm{J\,m^{-2}\,K^{-1}\,s^{-1/2}}$, while all five free parameters of the initial analysis are varied and estimated simultaneously. Based on this thermal inertia estimate the thermal conductivity of the boulder is estimated to be between 0.07 and 0.12 $\mathrm{W\,m^{-1}\,K^{-1}}$ and the porosity to be between 0.30 and 0.52. For the first time in thermophysical parameter derivation, correlations and uncertainties of all free model parameters are incorporated in the estimation procedure which is more than 5000 times more efficient than a comparable parameter sweep.