论文标题
不可交换特征分配模型具有特征大小的均匀增长
Non-exchangeable feature allocation models with sublinear growth of the feature sizes
论文作者
论文摘要
功能分配模型是在不同应用程序中使用的流行模型,例如无监督的学习或网络建模。特别是,印度自助餐过程是一个灵活而简单的单参数分配模型,其中功能数量与对象数量无限。与大多数功能分配模型一样,印度自助餐过程满足交换性的对称属性:在对象的排列下,分布是不变的。尽管在某些情况下需要此属性,但它具有很大的影响。重要的是,共享特定功能的对象数与对象数量线性增长。在本文中,我们描述了一类非交换特征分配模型,其中共享给定特征的对象数量会增长,其中可以通过调谐参数来控制速率。我们得出了模型的渐近性能,并表明该模型在各种数据集上提供了更好的拟合和更好的预测性能。
Feature allocation models are popular models used in different applications such as unsupervised learning or network modeling. In particular, the Indian buffet process is a flexible and simple one-parameter feature allocation model where the number of features grows unboundedly with the number of objects. The Indian buffet process, like most feature allocation models, satisfies a symmetry property of exchangeability: the distribution is invariant under permutation of the objects. While this property is desirable in some cases, it has some strong implications. Importantly, the number of objects sharing a particular feature grows linearly with the number of objects. In this article, we describe a class of non-exchangeable feature allocation models where the number of objects sharing a given feature grows sublinearly, where the rate can be controlled by a tuning parameter. We derive the asymptotic properties of the model, and show that such model provides a better fit and better predictive performances on various datasets.