论文标题

在线方案中的增量学习

Incremental Learning In Online Scenario

论文作者

He, Jiangpeng, Mao, Runyu, Shao, Zeman, Zhu, Fengqing

论文摘要

现代深度学习方法通​​过使用所有可用的任务数据训练模型在许多愿景应用中取得了巨大的成功。但是,有两个主要的障碍,使现实生活应用实施具有挑战性:(1)学习新课程使训练有素的模型迅速忘记了旧类知识,这被称为灾难性的遗忘。 (2)随着旧类的新观察随着时间的流逝而依次出现,分布可能会以无法预见的方式变化,从而使性能在未来数据上显着降级,这被称为概念漂移。每当添加新类时,当前最新的增量学习方法需要很长时间才能训练模型,并且没有一个考虑到旧课程的新观察结果。在本文中,我们提出了一个增量学习框架,该框架可以在具有挑战性的在线学习方案中起作用,并处理新的类数据和旧课程的新观察。我们在在线模式下解决问题(1),通过引入修改后的跨阶段损失以及两步学习技术。我们的方法的表现优于从CIFAR-100和ImagEnet-1000(ILSVRC 2012)数据集中的当前最新离线脱机增量学习方法获得的结果。我们还提供了一种简单而有效的方法来减轻问题(2),通过使用每个新阶层的新观察的功能更新示例集,并根据我们的完整框架使用Food-101数据集来展示在线食物图像分类的现实生活。

Modern deep learning approaches have achieved great success in many vision applications by training a model using all available task-specific data. However, there are two major obstacles making it challenging to implement for real life applications: (1) Learning new classes makes the trained model quickly forget old classes knowledge, which is referred to as catastrophic forgetting. (2) As new observations of old classes come sequentially over time, the distribution may change in unforeseen way, making the performance degrade dramatically on future data, which is referred to as concept drift. Current state-of-the-art incremental learning methods require a long time to train the model whenever new classes are added and none of them takes into consideration the new observations of old classes. In this paper, we propose an incremental learning framework that can work in the challenging online learning scenario and handle both new classes data and new observations of old classes. We address problem (1) in online mode by introducing a modified cross-distillation loss together with a two-step learning technique. Our method outperforms the results obtained from current state-of-the-art offline incremental learning methods on the CIFAR-100 and ImageNet-1000 (ILSVRC 2012) datasets under the same experiment protocol but in online scenario. We also provide a simple yet effective method to mitigate problem (2) by updating exemplar set using the feature of each new observation of old classes and demonstrate a real life application of online food image classification based on our complete framework using the Food-101 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源