论文标题

漫长周期和完整图的拉姆齐号

The Ramsey number of a long cycle and complete graphs

论文作者

Madarasi, Péter

论文摘要

In this paper, we prove that the multicolored Ramsey number $R(G_1,\dots,G_n,K_{n_1},\dots,K_{n_r})$ is at least $(γ-1)(κ-1)+1$ for arbitrary connected graphs $G_1,\dots,G_n$ and $ n_1,\ dots,n_r \ in \ mathbb {n} $,其中$γ= r(g_1,\ dots,g_n)$和$κ= r(k_ {n_1},\ dots,\ dots,k_ {n_r})$。 Al的Erd \ H OS。推测$ r(c_n,k_l)=(n-1)(l-1)(l-1)+1 $每$ n \ geq l \ geq 3 $,除了$ n = l = 3 $外。 Nikiforov证明了$ N \ GEQ 4L+2 $的猜想。使用上面的结合,我们得出了此结果的以下概括。 $ r(c_n,k_ {n_1},\ dots,k_ {n_r})=(n-1)(κ-1)+1 $,其中$κ= r(k_ {n_1},\ dots,k_ {n_r})$和$ n \ geq4κ+2 $。

In this paper, we prove that the multicolored Ramsey number $R(G_1,\dots,G_n,K_{n_1},\dots,K_{n_r})$ is at least $(γ-1)(κ-1)+1$ for arbitrary connected graphs $G_1,\dots,G_n$ and $n_1,\dots,n_r\in\mathbb{N}$, where $γ=R(G_1,\dots,G_n)$ and $κ=R(K_{n_1},\dots,K_{n_r})$. Erd\H os at al. conjectured that $R(C_n,K_l)=(n-1)(l-1)+1$ for every $n\geq l\geq 3$ except for $n=l=3$. Nikiforov proved this conjecture for $n\geq 4l+2$. Using the above bound, we derive the following generalization of this result. $R(C_n,K_{n_1},\dots,K_{n_r})=(n-1)(κ-1)+1$, where $κ=R(K_{n_1},\dots,K_{n_r})$ and $n\geq 4κ+2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源