论文标题
深度学习启用等离子体元面的快速设计
Fast Design of Plasmonic Metasurfaces Enabled by Deep Learning
论文作者
论文摘要
Metasurfaces是一个新兴的领域,可以通过由亚波长触角组成的超薄结构来操纵光,并满足小型光学元件的重要要求。为元图寻找新的设计或为所需功能优化现有的设计是一个计算昂贵且耗时的过程,因为它基于反复试验过程。我们通过模板搜索方法提出了一种以纳米光元元表设计的深度学习(DL)架构,称为双向自动编码器。与基于DL的早期方法相反,我们的方法论解决了多个元面拓扑空间中的优化,而不仅仅是一种,以解决一个逆设计的映射问题。我们使用我们的DL模型演示了元图设计的几何和参数空间库(GPSL)及其相应的光学响应。该GPSL充当了优化的通用设计和响应空间。作为示例应用程序,我们使用我们的方法来设计基于多带间隙的半波板元面板。通过此示例,我们演示了我们技术在解决常见逆设计的非唯一性问题方面的力量。我们的网络可恰当地收敛到多个跨表面拓扑,以实现所需的光学响应,而所需的光学响应和所搜索拓扑的光学响应之间的平均绝对误差较低。我们提出的技术将使具有不同功能的各种跨境的快速设计和优化。
Metasurfaces is an emerging field that enables the manipulation of light by an ultra-thin structure composed of sub-wavelength antennae and fulfills an important requirement for miniaturized optical elements. Finding a new design for a metasurface or optimizing an existing design for a desired functionality is a computationally expensive and time consuming process as it is based on an iterative process of trial and error. We propose a deep learning (DL) architecture dubbed bidirectional autoencoder for nanophotonic metasurface design via a template search methodology. In contrast with the earlier approaches based on DL, our methodology addresses optimization in the space of multiple metasurface topologies instead of just one, in order to tackle the one to many mapping problem of inverse design. We demonstrate the creation of a Geometry and Parameter Space Library (GPSL) of metasurface designs with their corresponding optical response using our DL model. This GPSL acts as a universal design and response space for the optimization. As an example application, we use our methodology to design a multi-band gap-plasmon based half-wave plate metasurface. Through this example, we demonstrate the power of our technique in addressing the non-uniqueness problem of common inverse design. Our network converges aptly to multiple metasurface topologies for the desired optical response with a low mean absolute error between desired optical response and the optical response of topologies searched. Our proposed technique would enable fast and accurate design and optimization of various kinds of metasurfaces with different functionalities.