论文标题
BTZ黑洞具有较高曲率校正的3D爱因斯坦 - 洛德洛克理论
BTZ black holes with higher curvature corrections in the 3D Einstein-Lovelock theory
论文作者
论文摘要
最近已经开发了获得重力及其Lovelock概括的有效描述的四维非维持爱因斯坦 - 加斯 - 孔网的正则化程序。在这里,我们提出了三维重力的正则化,该重力是基于耦合常数的重新缩放的,然后将极限$ d \至3 $。在任何顺序的较高曲率(高斯 - 骨网和洛夫洛克)校正的情况下,我们获得了Bañados-Teitelboim-Zanelli溶液的概括。获得的一般解决方案显示出一种特殊的行为:事件范围不仅允许渐近抗DE的保姆空间,而且对于De-sitter和Flat Case,当高斯 - 骨网偶联常数为负时,允许事件范围。还分析了溶液的各个分支并获得鹰温度的电荷因子。
The regularization procedure for getting the four-dimensional nontrivial Einstein-Gauss-Bonnet effective description of gravity and its Lovelock generalization has been recently developed. Here we propose the regularization for the three-dimensional gravity, which is based on the rescaling of the coupling constants and, afterward, taking the limit $D \to 3$. We obtain the generalization of the Bañados-Teitelboim-Zanelli solution in the presence of the higher curvature (Gauss-Bonnet and Lovelock) corrections of any order. The obtained general solution shows a peculiar behavior: The event horizon is allowed not only for asymptotically anti-de Sitter spacetimes, but also for the de-Sitter and flat cases, when the Gauss-Bonnet coupling constant is negative. The factor of the electric charge is analyzed as well for various branches of the solution and the Hawking temperature is obtained.