论文标题

BTZ黑洞具有较高曲率校正的3D爱因斯坦 - 洛德洛克理论

BTZ black holes with higher curvature corrections in the 3D Einstein-Lovelock theory

论文作者

Konoplya, R. A., Zhidenko, A.

论文摘要

最近已经开发了获得重力及其Lovelock概括的有效描述的四维非维持爱因斯坦 - 加斯 - 孔网的正则化程序。在这里,我们提出了三维重力的正则化,该重力是基于耦合常数的重新缩放的,然后将极限$ d \至3 $。在任何顺序的较高曲率(高斯 - 骨网和洛夫洛克)校正的情况下,我们获得了Bañados-Teitelboim-Zanelli溶液的概括。获得的一般解决方案显示出一种特殊的行为:事件范围不仅允许渐近抗DE的保姆空间,而且对于De-sitter和Flat Case,当高斯 - 骨网偶联常数为负时,允许事件范围。还分析了溶液的各个分支并获得鹰温度的电荷因子。

The regularization procedure for getting the four-dimensional nontrivial Einstein-Gauss-Bonnet effective description of gravity and its Lovelock generalization has been recently developed. Here we propose the regularization for the three-dimensional gravity, which is based on the rescaling of the coupling constants and, afterward, taking the limit $D \to 3$. We obtain the generalization of the Bañados-Teitelboim-Zanelli solution in the presence of the higher curvature (Gauss-Bonnet and Lovelock) corrections of any order. The obtained general solution shows a peculiar behavior: The event horizon is allowed not only for asymptotically anti-de Sitter spacetimes, but also for the de-Sitter and flat cases, when the Gauss-Bonnet coupling constant is negative. The factor of the electric charge is analyzed as well for various branches of the solution and the Hawking temperature is obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源