论文标题

关于最佳传感器选择和Kalman过滤攻击的复杂性和近似性

On the Complexity and Approximability of Optimal Sensor Selection and Attack for Kalman Filtering

论文作者

Ye, Lintao, Woodford, Nathaniel, Roy, Sandip, Sundaram, Shreyas

论文摘要

给定受随机噪声影响的线性动力学系统,我们考虑选择一组最佳的传感器(在设计时)的问题,以最大程度地减少Kalman过滤器的先验稳态或后验错误协方差,但要受到某些选择预算约束。我们表明的基本结果是,对于此问题,没有多项式时间恒定因素近似算法。这与文献中研究的其他类别的传感器选择问题形成鲜明对比,这些问题通常通过利用成本函数的贪婪算法和贪婪的算法(或超模型)来追求恒定因子近似。在这里,我们提供了一个具体的示例,表明贪婪算法对于卡尔曼过滤的设计时间传感器选择问题的执行差。然后,我们研究了在预定义的攻击预算限制下攻击(即删除)一组已安装的传感器的问题,以最大程度地提高稳态的轨迹或Kalman滤波器的后验错误协方差。同样,我们表明此问题没有多项式恒定因素近似算法,并特别表明贪婪算法可以任意执行较差。

Given a linear dynamical system affected by stochastic noise, we consider the problem of selecting an optimal set of sensors (at design-time) to minimize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter, subject to certain selection budget constraints. We show the fundamental result that there is no polynomial-time constant-factor approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity (or supermodularity) of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering. We then study the problem of attacking (i.e., removing) a set of installed sensors, under predefined attack budget constraints, to maximize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter. Again, we show that there is no polynomial-time constant-factor approximation algorithm for this problem, and show specifically that greedy algorithms can perform arbitrarily poorly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源