论文标题

关于离散接触力学的几何形状

On the geometry of discrete contact mechanics

论文作者

Simoes, Alexandre Anahory, de Diego, David Martín, de León, Manuel, Valcázar, Manuel Lainz

论文摘要

在本文中,我们继续构建适合接触几何形状的变异集成剂,尤其是在\ cite {vbs}开始,我们引入了离散的HERGLOTZ原理和相应的离散性HERGLOTZ方程,以在接触环境中用于离散的Lagrangian。这使我们能够为联系人的拉格朗日系统开发便捷的数值集成符,这些集成符通过构造进行合并接触。还讨论了精确的Lagrangian功能的存在。

In this paper, we continue the construction of variational integrators adapted to contact geometry started in \cite{VBS}, in particular, we introduce a discrete Herglotz Principle and the corresponding discrete Herglotz Equations for a discrete Lagrangian in the contact setting. This allows us to develop convenient numerical integrators for contact Lagrangian systems that are conformally contact by construction. The existence of an exact Lagrangian function is also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源