论文标题
Hardy在克点的功能平均
Average of Hardy's function at Gram points
论文作者
论文摘要
令$ z(t)=χ^{ - 1/2}(1/2+it)ζ(1/2+it)= e^{iθ(t)}ζ(1/2+it)$ be hardy的函数,$ g(n)$是$ n $ - $ n $ -th gram -th gram -th crim-th gram -th goint由$θ(g(g n))定义。 titchmarsh证明了$ \ sum_ {n \ leq n} z(g(2n))= 2n+o(n^{3/4} \ log^{3/4} n)$和$ \ sum_ {n \ leq n} z(g(2n+1)我们将将错误项提高到$ O(n^{1/4} \ log^{3/4} n \ log \ log \ log n)$。
Let $Z(t)=χ^{-1/2}(1/2+it)ζ(1/2+it)=e^{iθ(t)}ζ(1/2+it)$ be Hardy's function and $g(n)$ be the $n$-th Gram points defined by $θ(g(n))=πn$. Titchmarsh proved that $\sum_{n \leq N} Z(g(2n)) =2N+O(N^{3/4}\log^{3/4}N) $ and $\sum_{n \leq N} Z(g(2n+1)) =-2N+O(N^{3/4}\log^{3/4}N)$. We shall improve the error terms to $O(N^{1/4}\log^{3/4}N \log\log N)$.