论文标题

基于图像的约束解决的混合分类和推理

Hybrid Classification and Reasoning for Image-based Constraint Solving

论文作者

Mulamba, Maxime, Mandi, Jayanta, Canoy, Rocsildes, Guns, Tias

论文摘要

对于解决一部分输入的事实而是作为原始传感器数据(例如图像或语音)接收到的一部分输入的问题,人们对解决复杂的约束问题的兴趣增加了。我们将使用“ Visual Sudoku”作为原型问题,其中给定的单元格是手写并作为其图像提供的。在这种情况下,首先必须训练和使用分类器来标记图像,以便可以将标签用于解决问题。在本文中,我们探讨了将图像与约束求解器推理分类的杂交。我们表明,对预测的纯粹约束推理不会给出令人满意的结果。取而代之的是,我们通过将分类器的概率估计值暴露于约束求解器的概率估计来探索更严格的集成的可能性。这允许对这些概率估计值进行联合推断,在该概率估计中,我们使用求解器找到最大似然解决方案。我们探讨了分类器的力量与约束推理的力量之间的权衡,并通过进一步的结构知识来进一步整合。此外,我们研究了概率估计值对推理的校准的影响。我们的结果表明,这种混合方法的表现极大地胜过单独的方法,这鼓励了预测(概率)和约束解决方案的进一步整合。

There is an increased interest in solving complex constrained problems where part of the input is not given as facts but received as raw sensor data such as images or speech. We will use "visual sudoku" as a prototype problem, where the given cell digits are handwritten and provided as an image thereof. In this case, one first has to train and use a classifier to label the images, so that the labels can be used for solving the problem. In this paper, we explore the hybridization of classifying the images with the reasoning of a constraint solver. We show that pure constraint reasoning on predictions does not give satisfactory results. Instead, we explore the possibilities of a tighter integration, by exposing the probabilistic estimates of the classifier to the constraint solver. This allows joint inference on these probabilistic estimates, where we use the solver to find the maximum likelihood solution. We explore the trade-off between the power of the classifier and the power of the constraint reasoning, as well as further integration through the additional use of structural knowledge. Furthermore, we investigate the effect of calibration of the probabilistic estimates on the reasoning. Our results show that such hybrid approaches vastly outperform a separate approach, which encourages a further integration of prediction (probabilities) and constraint solving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源