论文标题

复杂性因子的新定义$ f(r,t,r_ {μν} t^{μν})$重力

New Definition of Complexity Factor in $f(R,T,R_{μν}T^{μν})$ Gravity

论文作者

Yousaf, Z., Bhatti, M. Z., Naseer, T.

论文摘要

本文致力于介绍$ f(r,t,r_ {μν} t^{μν})$ gravity的静态圆柱对称性配置的复杂性因子的新定义。为此,我们考虑了无关的静态圆柱时空以及局部各向异性相对论流体。在制定重力场和保护方程后,我们对Riemann曲率张量进行了正交分裂。与GR(对于球形情况)不同,结构标量$ x_ {tf} $之一已被确定为复杂性因子。该因素包含能量密度和各向异性压力成分的有效形式。复杂性因子,Tolman质量和Weyl标量之间的特殊关系也很少使用修改的$ f(r,t,r_ {μν} t^{μν})$校正分析。

This paper is devoted to present new definition of complexity factor for static cylindrically symmetric matter configurations in $f(R,T,R_{μν}T^{μν})$ gravity. For this purpose, we have considered irrotational static cylindrical spacetime coupled with a locally anisotropic relativistic fluid. After formulating gravitational field and conservation equations, we have performed orthogonal splitting of the Riemann curvature tensor. Unlike GR (for spherical case) the one of the structure scalars $X_{TF}$, has been identified to be a complexity factor. This factor contains effective forms of the energy density, and anisotropic pressure components. Few peculiar relations among complexity factor, Tolman mass and Weyl scalar are also analyzed with the modified $f(R,T,R_{μν}T^{μν})$ corrections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源