论文标题
拓扑结合及其与符号矩阵的关系
Topological conjugacy and its relations for symbolic matrices
论文作者
论文摘要
1988年,博伊尔(Boyle)和克里格(Krieger)定义了sofic班级代表矩阵的子介绍。本文介绍了整体子读词与表示矩阵之间关系的一些细节。此外,我们通过子末端表达了分解定理的新版本。通常,亚乳头的强移等效性(共轭)不适用于表示矩阵,但我们表明,固定的对角线积分子矩阵可以实现此结果。
In 1988 Boyle and Krieger defined sub-matrices for representation matrices of sofic shift. This paper presents some details of relations between integral sub-matrices and representation matrices. Besides, we express a new version of the Decomposition Theorem by sub-matrices. Generally, strong shift equivalence (conjugacy) of sub-matrices does not apply to representation matrices, but we show that this result can be achieved by the fixed diagonal integral sub-matrix.