论文标题
Wiener-Wintner Ergodic定理中几乎均匀的收敛
Almost uniform convergence in Wiener-Wintner ergodic theorem
论文作者
论文摘要
我们将Wiener-Wintner Ergodic定理中的几乎无处不在,以$σ$ -Finite的度量将其扩展到通常更强的几乎均匀的收敛性,并提供了更大的,通用的空间,该空间为此所保留。然后,我们将此结果扩展到Besicovitch的重量。
We extend almost everywhere convergence in Wiener-Wintner ergodic theorem for $σ$-finite measure to a generally stronger almost uniform convergence and present a larger, universal, space for which this convergence holds. We then extend this result to the case with Besicovitch weights.