论文标题

通过障碍理论在流行病中维持硬感染上限

Maintaining Hard Infection Caps in Epidemics via the Theory of Barriers

论文作者

Esterhuizen, Willem, Aschenbruck, Tim, Lévine, Jean, Streif, Stefan

论文摘要

流行病学研究通常集中在设计干预措施上,这些干预措施导致受感染的个体渐近接近零的数量,而无需考虑该数量可能在瞬态期间高值达到峰值。最近的研究表明,可以使用基于集合的方法来解决该问题,我们通过应用障碍理论来为流行病模型构建可允许和不变的集合的障碍理论。我们描述了如何使用这些集合来选择在流行期间保持感染帽的干预策略。我们还得出了模型参数的代数条件,这些参数将系统分类为舒适,舒适,可行或绝望的系统。

Research in epidemiology often focusses on designing interventions that result in the number of infected individuals asymptotically approaching zero, without considering that this number may peak at high values during transients. Recent research has shown that a set-based approach could be used to address the problem, and we build on this idea by applying the theory of barriers to construct admissible and invariant sets for an epidemic model. We describe how these sets may be used to choose intervention strategies that maintain infection caps during epidemics. We also derive algebraic conditions of the model parameters that classify a system as being either comfortable, comfortable-viable, viable, or desperate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源