论文标题
$ k $ -dnf解决方案的可行脱节属性的失败和自动化的NP硬度
Failure of Feasible Disjunction Property for $k$-DNF Resolution and NP-hardness of Automating It
论文作者
论文摘要
我们表明,对于每个整数$ k \ geq 2 $,res($ k $)命题证明系统都没有较弱的可行分离属性。接下来,我们概括了Atserias和Müller[Focs,2019年]的最新结果($ k $)。我们表明,如果在p(分别QP,subexp)中不包含NP,则对于每个整数$ k \ geq 1 $,res($ k $)在多项式中不可自动(quasi-polynomial,subsendential)时间。
We show that for every integer $k \geq 2$, the Res($k$) propositional proof system does not have the weak feasible disjunction property. Next, we generalize a recent result of Atserias and Müller [FOCS, 2019] to Res($k$). We show that if NP is not included in P (resp. QP, SUBEXP) then for every integer $k \geq 1$, Res($k$) is not automatable in polynomial (resp. quasi-polynomial, subexponential) time.