论文标题

在各种观察条件下,极端自适应光学系统的预测鲁棒性:使用VLT/Sphere自适应光学数据分析

Robustness of prediction for extreme adaptive optics systems under various observing conditions: An analysis using VLT/SPHERE adaptive optics data

论文作者

van Kooten, M. A. M., Doelman, Niek, Kenworthy, Matthew

论文摘要

对于高对比度成像(HCI)系统(例如VLT/Sphere),在科学图像中,风驱动的光环污染了该系统在小角度分离下的性能。该光环是由于测量波前相和应用相校正之间有限的时间,因此自适应光学(AO)系统中的伺服lag误差的结果。减轻伺服锁定误差的一种方法是预测控制。我们旨在估计并了解线性数据驱动预测在各种湍流条件下为VLT/Sphere提供的潜在对天空性能。我们使用了线性最小均方根误差预测器,并将其应用于在各种湍流条件下在许多夜晚在VLT/Sphere中从VLT/Sphere中使用的27个不同的AO遥测数据集。我们使用残留波前阶段方差作为性能度量评估了预测变量的性能。我们表明,与当前的VLT/Sphere AO性能相比,预测始终导致时间波前相方差的降低。与VLT/Sphere残差相比,我们发现预测相位方差的平均改善因子为5.1。与理想的VLT/Sphere相比,我们发现改进因子为2.0。在我们的27种不同情况下,我们发现预测因子会导致剩余时间相位方差的较小扩展。最后,我们表明将空间信息包括在预测变量中没有好处,与从冷冻流假设中预期的情况相反。纯粹的时间预测指标最适合VLT/Sphere上的AO。

For high-contrast imaging (HCI) systems, such as VLT/SPHERE, the performance of the system at small angular separations is contaminated by the wind-driven halo in the science image. This halo is a result of the servo-lag error in the adaptive optics (AO) system due to the finite time between measuring the wavefront phase and applying the phase correction. One approach to mitigating the servo-lag error is predictive control. We aim to estimate and understand the potential on-sky performance that linear data-driven prediction would provide for VLT/SPHERE under various turbulence conditions. We used a linear minimum mean square error predictor and applied it to 27 different AO telemetry data sets from VLT/SPHERE taken over many nights under various turbulence conditions. We evaluated the performance of the predictor using residual wavefront phase variance as a performance metric. We show that prediction always results in a reduction in the temporal wavefront phase variance compared to the current VLT/SPHERE AO performance. We find an average improvement factor of 5.1 in phase variance for prediction compared to the VLT/SPHERE residuals. When comparing to an idealised VLT/SPHERE, we find an improvement factor of 2.0. Under our 27 different cases, we find the predictor results in a smaller spread of the residual temporal phase variance. Finally, we show there is no benefit to including spatial information in the predictor in contrast to what might have been expected from the frozen flow hypothesis. A purely temporal predictor is best suited for AO on VLT/SPHERE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源