论文标题
在BESOV空间中的较高尺寸Camassa-Holm方程的不均匀依赖性
Non-uniform dependence for higher dimensional Camassa-Holm equations in Besov spaces
论文作者
论文摘要
在本文中,我们研究了对较高尺寸Camassa-Holm方程的最初数据的依赖性。我们表明,数据到解决方案的映射在besov空间中并不统一连续依赖性,$ b^s_ {p,r}(\ mathbb {r}^d),s> \ max \ {1+ \ frac \ frac d2,\ frac32 \} $。
In this paper, we investigate the dependence on initial data of solutions to higher dimensional Camassa-Holm equations. We show that the data-to-solution map is not uniformly continuous dependence in Besov spaces $B^s_{p,r}(\mathbb{R}^d),s>\max\{1+\frac d2,\frac32\}$.