论文标题
Riemann Zeta功能的离散负矩的下限
Lower bounds for discrete negative moments of the Riemann zeta function
论文作者
论文摘要
我们证明了所有分数$ k \ geqslant 0 $的离散负数$ 2K $ TH MONKS的下限。界限与Gogek和Hejhal的猜想一致。一路上,我们证明了Riemann Zeta函数的离散扭曲的第二刻的一般公式。这与Conrey和Snaith的猜想一致。
We prove lower bounds for the discrete negative $2k$th moment of the derivative of the Riemann zeta function for all fractional $k\geqslant 0$. The bounds are in line with a conjecture of Gonek and Hejhal. Along the way, we prove a general formula for the discrete twisted second moment of the Riemann zeta function. This agrees with a conjecture of Conrey and Snaith.