论文标题

Riemann Zeta功能的离散负矩的下限

Lower bounds for discrete negative moments of the Riemann zeta function

论文作者

Heap, Winston, Li, Junxian, Zhao, Jing

论文摘要

我们证明了所有分数$ k \ geqslant 0 $的离散负数$ 2K $ TH MONKS的下限。界限与Gogek和Hejhal的猜想一致。一路上,我们证明了Riemann Zeta函数的离散扭曲的第二刻的一般公式。这与Conrey和Snaith的猜想一致。

We prove lower bounds for the discrete negative $2k$th moment of the derivative of the Riemann zeta function for all fractional $k\geqslant 0$. The bounds are in line with a conjecture of Gonek and Hejhal. Along the way, we prove a general formula for the discrete twisted second moment of the Riemann zeta function. This agrees with a conjecture of Conrey and Snaith.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源