论文标题
使用快速半数字方法研究Lyman- $α$光学深度波动5.5 $
Studying the Lyman-$α$ optical depth fluctuations at $z \sim 5.5$ using fast semi-numerical methods
论文作者
论文摘要
我们提出了一种计算高效且快速的半数字技术,用于模拟Lyman-$α$(LY $α$)吸收光学深度,在存在的中性氢“岛”中,由于Redshifts $ 5 \ liseSim Z \ Lessim Z \ Lessim 6 $而剩下的中性氢“岛”。分析的主要输入是(i)在电离(命名脚本)期间的离子化区域的半数字光子连接模型,以及用于通过中性岛模拟阴影的处方,以及(ii)波动的Gunn-Peterson近似,以模拟LY $ al $α$吸收。然后,我们的模型用于模拟有效的光学深度中的大规模波动,如沿视线向高$ -z $ quasars所观察到的。我们的模型由五个参数充分描述。通过将其中的两个设置为默认值并改变其他三个值,我们根据数据允许的限制了$ 5 \ lyssim z \ Lessim 6 $的限制。我们确认,在$ \ gtrsim2σ$ pusitive $ z \ sim 5.6 $之前,电源是\ emph {not},其置信度限制确切,具体取决于如何处理数据中通量的非检测。我们还确认,电源的完成可能迟到为$ z \ sim 5.2 $。随着模型的进一步改进,并且随着$ z \ sim 6 $的更多视线线,我们可以利用分析的计算效率,以在电离时对电离分数获得更严格的约束。
We present a computationally efficient and fast semi-numerical technique for simulating the Lyman-$α$ (Ly$α$) absorption optical depth in presence of neutral hydrogen "islands" left over from reionization at redshifts $5 \lesssim z \lesssim 6$. The main inputs to the analysis are (i) a semi-numerical photon-conserving model of ionized regions during reionization (named SCRIPT) along with a prescription for simulating the shadowing by neutral islands and (ii) the fluctuating Gunn-Peterson approximation to model the Ly$α$ absorption. Our model is then used for simulating the large-scale fluctuations in the effective optical depth as observed along sight lines towards high$-z$ quasars. Our model is fully described by five parameters. By setting two of them to default values and varying the other three, we obtain the constraints on reionization history at $5 \lesssim z \lesssim 6$ as allowed by the data. We confirm that reionization is \emph{not} complete before $z \sim 5.6$ at $\gtrsim 2σ$ confidence, with the exact confidence limits depending on how the non-detections of the flux in the data are treated. We also confirm that the completion of reionization can be as late as $z \sim 5.2$. With further improvements in the model and with more sight lines at $z \sim 6$, we can take advantage of the computational efficiency of our analysis to obtain more stringent constraints on the ionization fraction at the tail-end of reionization.