论文标题

薄域中的接触Hele-shaw问题的渐近分析

Asymptotic analysis of a contact Hele-Shaw problem in a thin domain

论文作者

Mel'nyk, Taras, Vasylyeva, Nataliya

论文摘要

我们分析了薄域中自由边界的零表面张力的接触率$ω^{\ varepsilon}(t)。 使用多尺度分析,我们研究了该问题的渐近行为为$ \ varepsilon \至0,$,即,当薄域$ω^{\ varepsilon}(t)$缩水到间隔$(0,l)中。 $(\ varepsilon = 0),$定义了渐近近似的其他术语,并证明了适当的渐近估计,可以证明这种方法是合理的。 我们还假设在初始时间$ t = 0 $的情况下,我们还建立了[0,t] $ in [0,t] $的$ t \ in Corner Points的保存几何形状。

We analyze the contact Hele-Shaw problem with zero surface tension of a free boundary in a thin domain $Ω^{\varepsilon}(t).$ Under suitable conditions on the given data, the one-valued local classical solvability of the problem for each fixed value of the parameter $\varepsilon$ is proved. Using the multiscale analysis, we study the asymptotic behavior of this problem as $\varepsilon \to 0,$ i.e., when the thin domain $Ω^{\varepsilon}(t)$ is shrunk into the interval $(0, l).$ Namely, we find exact representation of the free boundary for $t\in[0,T],$ derive the corresponding limit problem $(\varepsilon= 0),$ define other terms of the asymptotic approximation and prove appropriate asymptotic estimates that justify this approach. We also establish the preserving geometry of the free boundary near corner points for $t\in[0,T]$ under assumption that free and fixed boundaries form right angles at the initial time $t=0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源