论文标题
一般开放量子系统的热力学不确定性关系
Thermodynamic uncertainty relation for general open quantum systems
论文作者
论文摘要
我们得出了一般开放量子动力学的热力学不确定性关系,这是由包含系统和环境组成的复合系统上的联合统一进化来描述的。通过测量系统环境相互作用后的环境状态,我们通过生存活动来束缚环境中的可观察到的物体,从而降低了经典马尔可夫过程中的动态活性。值得注意的是,本文得出的关系适用于一般的开放量子系统,具有可观察到的任何初始状态。因此,对于具有任意时间依赖性过渡率和初始状态的经典马尔可夫过程,我们的关系得到了满足。我们将关系应用于连续测量和量子步行,以发现系统的量子性质可以提高精度。此外,我们可以通过采用适当的连续测量来使下限任意小。
We derive a thermodynamic uncertainty relation for general open quantum dynamics, described by a joint unitary evolution on a composite system comprising a system and an environment. By measuring the environmental state after the system-environment interaction, we bound the counting observables in the environment by the survival activity, which reduces to the dynamical activity in classical Markov processes. Remarkably, the relation derived herein holds for general open quantum systems with any counting observable and any initial state. Therefore, our relation is satisfied for classical Markov processes with arbitrary time-dependent transition rates and initial states. We apply our relation to continuous measurement and the quantum walk to find that the quantum nature of the system can enhance the precision. Moreover, we can make the lower bound arbitrarily small by employing appropriate continuous measurement.