论文标题
测量兼容性:金鱼系统
Geodesic compatibility: Goldfish systems
论文作者
论文摘要
为了捕获可集成系统在几何形状方面的多维一致性特征,我们提供了一种称为\ emph {Geodesic兼容性}的条件,该条件暗示着积分在地理流量的涉及时存在。测量兼容性条件是由一个具体的示例构建的,即通过泊松结构和变异原理的可集成的Calogero的金鱼系统构建。测量兼容性的几何视图在两个不同的汉密尔顿载体场之间提供了兼容的平行传输。
To capture a multidimensional consistency feature of integrable systems in terms of the geometry, we give a condition called \emph{geodesic compatibility} that implies the existence of integrals in involution of the geodesic flow. The geodesic compatibility condition is constructed from a concrete example namely the integrable Calogero's Goldfish system through the Poisson structure and the variational principle. The geometrical view of the geodesic compatibility gives a compatible parallel transport between two different Hamiltonian vector fields.