论文标题

等级2本地系统和Abelian品种II

Rank 2 local systems and abelian varieties II

论文作者

Krishnamoorthy, Raju, Pál, Ambrus

论文摘要

令$ x/\ mathbb {f} _ {q} $成为平滑,几何连接的,准注射量的多样性。令$ \ Mathcal {e} $为$ x $上的半完整$ f $ -isocrystal。假设$ \ mathcal e $的不可约合$ \ mathcal {e} _i $具有等级2,确定性$ \ bar {\ mathbb {q}} _ p(-1)$,而无限单型$。假设进一步,对于$ x $的每个关闭点$ x $,$ \ mathcal {e} $ at $ x $的特征多项式位于$ \ m athbb {q} [q} [t] \ subset \ subset \ mathbb q_p [t] $中。然后存在一个非平凡的开放集$ u \子集X $,因此$ \ Mathcal {e} | _U $来自$ u $的Abelian品种。 作为一个应用程序,让$ l_1 $为不可约的Lisse $ \ bar {\ Mathbb {q}} _ l $ sheaf,$ x $上的$ x $,具有排名2的$ \ bar {\ mathbb {q}} _ l(q}} _ l(-1)$,infinite monodromy in $ \ iffty $。然后,所有的结晶伴侣都存在$ l_1 $的所有(如Deligne的Crystalline Companions的预测)时,并且仅在存在非平凡的开放式套装$ u \ u \ subset x $和Abelian方案$π_U\ COLON A_U \ COLON A_U \ cOLON A_U \ rightarrow U $中,因此$ r^1(π_U)_*\ bar {\ mathbb {q}}} _ l $。

Let $X/\mathbb{F}_{q}$ be a smooth, geometrically connected, quasiprojective variety. Let $\mathcal{E}$ be a semisimple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal{E}_i$ of $\mathcal E$ have rank 2, determinant $\bar{\mathbb{Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal{E}$ at $x$ is in $\mathbb{Q}[t]\subset \mathbb Q_p[t]$. Then there exists a non-trivial open set $U\subset X$ such that $\mathcal{E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar{\mathbb{Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar{\mathbb{Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exists a non-trivial open set $U\subset X$ and an abelian scheme $π_U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^1(π_U)_*\bar{\mathbb{Q}}_l$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源