论文标题
织物表面表征:使用具有挑战性的数据集评估基于深度学习的纹理表示
Fabric Surface Characterization: Assessment of Deep Learning-based Texture Representations Using a Challenging Dataset
论文作者
论文摘要
触觉传感或织物手在个人决定从可用织物购买某种织物的决定中起着至关重要的作用。因此,纺织品和服装制造商长期以来一直在寻找一种评估织物手的客观方法,然后可以将其用于用所需的手来设计织物。在现实世界中识别纹理和材料在对象识别和场景理解中起着重要作用。在本文中,我们探讨了如何计算表征材料的明显或潜在特性(例如表面平滑度),即计算材料表面表征,从而超出了材料识别的一步。我们将问题提出为非常细粒度的纹理分类问题,并研究基于深度学习的纹理表示技术如何帮助解决任务。我们介绍了一种新的大型挑战性微观材料表面数据集(Commons),该数据集旨在在智能制造系统中使用自动化的织物质量评估机制。然后,我们对使用CONSONS的最先进的基于深度学习的方法进行全面评估。此外,我们提出了一个多级纹理编码和表示网络(multer),该网络同时利用低级和高级功能来维护纹理表示中的纹理细节和空间信息。我们的结果表明,与最先进的深层纹理描述符相比,Multer不仅在我们的Commons数据集上具有更高的准确性,以便在材料表征上,而且在已建立的数据集(例如MINC-2500和GTOS-MOBILE)上获得了材料识别。
Tactile sensing or fabric hand plays a critical role in an individual's decision to buy a certain fabric from the range of available fabrics for a desired application. Therefore, textile and clothing manufacturers have long been in search of an objective method for assessing fabric hand, which can then be used to engineer fabrics with a desired hand. Recognizing textures and materials in real-world images has played an important role in object recognition and scene understanding. In this paper, we explore how to computationally characterize apparent or latent properties (e.g., surface smoothness) of materials, i.e., computational material surface characterization, which moves a step further beyond material recognition. We formulate the problem as a very fine-grained texture classification problem, and study how deep learning-based texture representation techniques can help tackle the task. We introduce a new, large-scale challenging microscopic material surface dataset (CoMMonS), geared towards an automated fabric quality assessment mechanism in an intelligent manufacturing system. We then conduct a comprehensive evaluation of state-of-the-art deep learning-based methods for texture classification using CoMMonS. Additionally, we propose a multi-level texture encoding and representation network (MuLTER), which simultaneously leverages low- and high-level features to maintain both texture details and spatial information in the texture representation. Our results show that, in comparison with the state-of-the-art deep texture descriptors, MuLTER yields higher accuracy not only on our CoMMonS dataset for material characterization, but also on established datasets such as MINC-2500 and GTOS-mobile for material recognition.