论文标题
在特征2中仍然不可还原2
Irreducible projective representations of the alternating group which remain irreducible in characteristic 2
论文作者
论文摘要
对于任何有限的组G,询问在给定的特征p中,g的常规不可约定表示尚不可约定是一个有趣的问题。当G是交替组的适当双盖时,我们回答了P = 2的问题。作为证据中的关键要素,我们证明了在schur p功能方面,在对称组的双层覆盖率的rouquier块中分解数字的公式。
For any finite group G it is an interesting question to ask which ordinary irreducible representations of G remain irreducible in a given characteristic p. We answer this question for p=2 when G is the proper double cover of the alternating group. As a key ingredient in the proof, we prove a formula for the decomposition numbers in Rouquier blocks of double covers of symmetric groups, in terms of Schur P-functions.