论文标题
关于线性森林的反拉姆西数
On the anti-Ramsey numbers of linear forests
论文作者
论文摘要
对于固定的图形$ f $,$ \ textit {anti-ramsey number} $,$ ar(n,f)$是$ k_n $的边缘色中的最大颜色数,不包含$ f $的彩虹副本。在本文中,我们确定了对足够大的$ n $的线性森林数的确切值,并显示了极端的边缘色图。这回答了Fang,Győri,Lu和Xiao的问题。
For a fixed graph $F$, the $\textit{anti-Ramsey number}$, $AR(n,F)$, is the maximum number of colors in an edge-coloring of $K_n$ which does not contain a rainbow copy of $F$. In this paper, we determine the exact value of anti-Ramsey numbers of linear forests for sufficiently large $n$, and show the extremal edge-colored graphs. This answers a question of Fang, Győri, Lu and Xiao.