论文标题
双层覆盖的镜子对称性 - YAU品种
Mirror symmetry for double cover Calabi--Yau varieties
论文作者
论文摘要
提出的论文是一系列论文Arxiv的延续:1810.00606和Arxiv:1903.09373。 In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in arXiv:1810.00606 and arXiv:1903.09373 to construct a pair of singular double cover Calabi--Yau varieties $(Y,Y^{\vee})$ over toric manifolds and compute their topological Euler characteristics and Hodge numbers.在$ 3 $维的情况下,我们表明$(y,y^{\ vee})$形成拓扑镜对,即$ h^{p,q}(y)= h^{3-p,q}(y^{\ vee})$ for $ p,q $。
The presented paper is a continuation of the series of papers arXiv:1810.00606 and arXiv:1903.09373. In this paper, utilizing Batyrev and Borisov's duality construction on nef-partitions, we generalize the recipe in arXiv:1810.00606 and arXiv:1903.09373 to construct a pair of singular double cover Calabi--Yau varieties $(Y,Y^{\vee})$ over toric manifolds and compute their topological Euler characteristics and Hodge numbers. In the $3$-dimensional cases, we show that $(Y,Y^{\vee})$ forms a topological mirror pair, i.e., $h^{p,q}(Y)=h^{3-p,q}(Y^{\vee})$ for all $p,q$.