论文标题

有限组的通勤共轭类图形的光谱和能量

Spectrum and energies of commuting conjugacy class graph of a finite group

论文作者

Bhowal, Parthajit, Nath, Rajat Kanti

论文摘要

在本文中,我们计算频谱,拉普拉斯频谱,无标志性的laplacian频谱及其相应的通勤能量$ g(p,m,n)= \ langle x,y:x^{p^m} = y^y^p^y^n} = y^n} = [x,y] 1 \ rangle $,其中$ p $是任何prime,$ m \ geq 1 $和$ n \ geq 1 $。我们带来了一些后果,以及$ g(p,m,n)$的通勤共轭类图形是超级积分的。我们还比较了各种能量,并确定$ g(p,m,n)$的通勤共轭类图形是超能力,l hyperenergetic还是q-hyperenergetic。

In this paper we compute spectrum, Laplacian spectrum, signless Laplacian spectrum and their corresponding energies of commuting conjugacy class graph of the group $G(p, m, n) = \langle x, y : x^{p^m} = y^{p^n} = [x, y]^p = 1, [x, [x, y]] = [y, [x, y]] = 1\rangle$, where $p$ is any prime, $m \geq 1$ and $n \geq 1$. We derive some consequences along with the fact that commuting conjugacy class graph of $G(p, m, n)$ is super integral. We also compare various energies and determine whether commuting conjugacy class graph of $G(p, m, n)$ is hyperenergetic, L-hyperenergetic or Q-hyperenergetic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源