论文标题
正规化的Lovelock重力
Regularized Lovelock gravity
论文作者
论文摘要
考虑到lovelock-lanczos重力的四维正规化,直到任意曲率顺序。我们表明,lovelock-lanczos项可以在四个维度上为爱因斯坦田间方程提供非平凡的贡献,用于球形对称和弗里德曼·罗马·罗伯逊 - 罗伯逊 - 漫游者的空位,以及在围绕(anti)deter de ter Sitter vacua的扰动理论中的第一阶。我们将讨论这些理论引起的宇宙和黑洞解决方案,重点是吸引子的存在及其稳定性。尽管对于任何有限数量的lovelock项,曲率奇异性都持续存在,但表明它们在具有独特真空的理论的非扰动极限中消失。
A four-dimensional regularization of Lovelock-Lanczos gravity up to an arbitrary curvature order is considered. We show that Lovelock-Lanczos terms can provide a non-trivial contribution to the Einstein field equations in four dimensions, for spherically symmetric and Friedmann-Lemaître-Robertson-Walker spacetimes, as well as at first order in perturbation theory around (anti) de Sitter vacua. We will discuss the cosmological and black hole solutions arising from these theories, focusing on the presence of attractors and their stability. Although curvature singularities persist for any finite number of Lovelock terms, it is shown that they disappear in the non-perturbative limit of a theory with a unique vacuum.