论文标题

基于Wasserstein距离的多元拟合测试

Multivariate goodness-of-Fit tests based on Wasserstein distance

论文作者

Hallin, Marc, Mordant, Gilles, Segers, Johan

论文摘要

提出了基于经验剂量恒星距离的拟合优点测试,以用于涉及一般多元分布的简单和复合零假设。对于小组家族,该过程将在通过不变性初步减少数据后实施。此属性允许计算有限样本量的确切临界值和p值。应用包括对位置的测试 - 规模家庭和对仿射转化产生的家庭的测试,例如具有给定标准径向密度的椭圆形分布和未指定的位置向量和散射矩阵。具有未指定的平均向量和协方差矩阵的多元正态性的新型测试是一种特殊情况。对于更通用的参数族,我们提出了一个参数引导程序来计算临界值。缺乏经验瓦斯汀距离的渐近分布理论意味着,零假设下参数引导的有效性仍然是一个猜想。但是,我们表明该测试与固定替代方案保持一致。为此,我们证明了在瓦斯坦斯坦距离中的经验分布的统一定律,在瓦斯坦斯坦距离中,均匀性是在满足统一的可集成性条件的任何基础分布上的均匀性,但没有额外的矩假设。测试统计数据的计算归结为解决了良好的半污物最佳运输问题。广泛的数值实验证明了对p = 1和p = 2的Wasserstein距离的实际可行性和出色的性能,以及至少d = 5的维度。该模拟还为参数Bootstrap的渐近有效性的猜想提供了支持。

Goodness-of-fit tests based on the empirical Wasserstein distance are proposed for simple and composite null hypotheses involving general multivariate distributions. For group families, the procedure is to be implemented after preliminary reduction of the data via invariance.This property allows for calculation of exact critical values and p-values at finite sample sizes. Applications include testing for location--scale families and testing for families arising from affine transformations, such as elliptical distributions with given standard radial density and unspecified location vector and scatter matrix. A novel test for multivariate normality with unspecified mean vector and covariance matrix arises as a special case. For more general parametric families, we propose a parametric bootstrap procedure to calculate critical values. The lack of asymptotic distribution theory for the empirical Wasserstein distance means that the validity of the parametric bootstrap under the null hypothesis remains a conjecture. Nevertheless, we show that the test is consistent against fixed alternatives. To this end, we prove a uniform law of large numbers for the empirical distribution in Wasserstein distance, where the uniformity is over any class of underlying distributions satisfying a uniform integrability condition but no additional moment assumptions. The calculation of test statistics boils down to solving the well-studied semi-discrete optimal transport problem. Extensive numerical experiments demonstrate the practical feasibility and the excellent performance of the proposed tests for the Wasserstein distance of order p = 1 and p = 2 and for dimensions at least up to d = 5. The simulations also lend support to the conjecture of the asymptotic validity of the parametric bootstrap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源