论文标题
GL的中心值的二次曲折(3)
Quadratic twists of central values for GL(3)
论文作者
论文摘要
我们证明,在任何数字字段上,GL(3)的尖锐自动形式表示由其中心值的二次曲折确定。在非Gelbart-Jacquet提升的情况下,结果是基于某个Euler产品的分析行为的条件。我们推断出无限许多二次曲折的中心价值的趋势。这概括了Chinta和DiaConu的结果,该结果仅在合理数字的领域有效,仅对Gelbart-Jacquet升降机进行探索。
We prove that a cuspidal automorphic representation of GL(3) over any number field is determined by the quadratic twists of its central value. In the case of a non-Gelbart-Jacquet lift, the result is conditional on the analytic behavior of a certain Euler product. We deduce the nonvanishing of infinitely many quadratic twists of central values. This generalizes a result of Chinta and Diaconu that was valid only over the field of rational numbers and explored only for Gelbart-Jacquet lifts.