论文标题

基于政策的联邦学习

Policy-Based Federated Learning

论文作者

Katevas, Kleomenis, Bagdasaryan, Eugene, Waterman, Jason, Safadieh, Mohamad Mounir, Birrell, Eleanor, Haddadi, Hamed, Estrin, Deborah

论文摘要

在本文中,我们介绍了Polifl,这是一个分散的基于边缘的框架,该框架支持联合学习的异质隐私政策。我们对三种用例评估了我们的系统,这些用例训练使用手机收集的敏感用户数据 - 预测性文本,图像分类和通知参与预测 - 在Raspberry Pi Edge设备上。我们发现,Polifl能够在合理的资源和时间预算中进行准确的模型培训和推断,同时还可以执行异质的隐私政策。

In this paper we present PoliFL, a decentralized, edge-based framework that supports heterogeneous privacy policies for federated learning. We evaluate our system on three use cases that train models with sensitive user data collected by mobile phones - predictive text, image classification, and notification engagement prediction - on a Raspberry Pi edge device. We find that PoliFL is able to perform accurate model training and inference within reasonable resource and time budgets while also enforcing heterogeneous privacy policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源